Compute all available model metrics
eval_all.Rd
computes all evaluation metrics given a prediction and a reference vector. The functionality includes general regression metrics and hydrological metrics (wrapper to (Mauricio Zambrano-Bigiarini 2020) ):
Root Mean Square Error (RMSE)
Normalized Root Mean Square Error (NRMSE)
Coefficient of Determination (R2)
Nash-Sutcliffe Efficiency (Nash and Sutcliffe 1970)
Kling-Gupta Efficiency (Gupta et al. 2009)
Usage
eval_all(prediction, reference)
rmse(prediction, reference)
nrmse(prediction, reference)
r2(prediction, reference)
nse(prediction, reference)
kge(prediction, reference)
Arguments
- prediction
a vector or ts object of predicted values
- reference
a vector or ts object (on the same time scale as prediction) containing ground truth values
Functions
rmse()
: Root Mean Squared Errornrmse()
: Normalized Root Mean Squared Errorr2()
: Coefficient of Determinationnse()
: Nash-Sutcliffe Efficiencykge()
: Kling-Gupta Efficiency
References
Gupta HV, Kling H, Yilmaz KK, Martinez GF (2009).
“Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling.”
Journal of Hydrology, 377(1-2), 80--91.
doi:10.1016/j.jhydrol.2009.08.003
.
Mauricio Zambrano-Bigiarini (2020).
hydroGOF: Goodness-of-fit functions for comparison of simulated and observed hydrological time series.
doi:10.5281/zenodo.839854
, R package version 0.4-0, https://github.com/hzambran/hydroGOF.
Nash JE, Sutcliffe JV (1970).
“River flow forecasting through conceptual models part I — A discussion of principles.”
Journal of Hydrology, 10(3), 282--290.
doi:10.1016/0022-1694(70)90255-6
.